Interfacial polar interactions affect gramicidin channel kinetics.

نویسندگان

  • Tatiana K Rostovtseva
  • Horia I Petrache
  • Namdar Kazemi
  • Elnaz Hassanzadeh
  • Sergey M Bezrukov
چکیده

Critical to biological processes such as secretion and transport, protein-lipid interactions within the membrane and at the membrane-water interface still raise many questions. Here we examine the role of lipid headgroups in these interactions by using gramicidin A (gA) channels in planar bilayers as a probe. We show that although headgroup demethylation from phosphatidylcholine (DOPC) to phosphatidylethanolamine decreases the lifetime of gA channels by an order of magnitude in accordance with the currently accepted hydrophobic mismatch mechanism, our findings with diether-DOPC suggest the importance of the headgroup-peptide interactions. According to our x-ray diffraction measurements, this lipid has the same hydrophobic thickness as DOPC but increases gA lifetime by a factor of 2. Thus we demonstrate that peptide-headgroup interactions may dominate over the effect of hydrophobic mismatch in regulating protein function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model for the interfacial kinetics of phospholipase D activity on long-chain lipids.

The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can b...

متن کامل

Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers.

The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptopha...

متن کامل

Gramicidin channel kinetics under tension.

We have measured the effect of tension on dimerization kinetics of the channel-forming peptide gramicidin A. By aspirating large unilamellar vesicles into a micropipette electrode, we are able to simultaneously monitor membrane tension and electrical activity. We find that the dimer formation rate increases by a factor of 5 as tension ranges from 0 to 4 dyn/cm. The dimer lifetime also increases...

متن کامل

Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.

The pentadecapeptide gramicidin A, which is known to form highly conductive ion channels in a bilayer lipid membrane by assembling as transmembrane head-to-head dimers, can be modified by attaching a biotin group to its C-terminus through an aminocaproyl spacer. Such biotinylated gramicidin A analogues also form ion channels in a hydrophobic lipid bilayer, exposing the biotin group to the aqueo...

متن کامل

Lipid-dependent effects of halothane on gramicidin channel kinetics: a new role for lipid packing stress.

We find that the sensitivity of gramicidin A channels to the anesthetic halothane is highly lipid dependent. Specifically, exposure of membranes made of lamellar DOPC to halothane in concentrations close to clinically relevant reduces channel lifetimes by 1 order of magnitude. At the same time, gramicidin channels in membranes of nonlamellar DOPE are affected little, if at all, by halothane. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 94 4  شماره 

صفحات  -

تاریخ انتشار 2008